Applications of Lefschetz Numbers in Control Theory
نویسنده
چکیده
We develop some applications of techniques of the Lefschetz coincidence theory in control theory. The topics are existence of equilibria and their robustness, controllability and its robustness.
منابع مشابه
ar X iv : m at h / 04 02 34 6 v 1 [ m at h . O C ] 2 1 Fe b 20 04 Applications of Lefschetz numbers in control theory
The goal of this paper is to develop some applications of the Lefschetz fixed point theory techniques, already available in dynamics, in control theory. A dynamical system on a manifold M is a map f : M → M. The current state, x ∈ M, of the system determines the next state, f(x), and its equilibria are the fixed points of f, f(x) = x. More generally, one deals with coincidences of a pair of map...
متن کاملLefschetz fibrations and the Hodge bundle
Integral symplectic 4–manifolds may be described in terms of Lefschetz fibrations. In this note we give a formula for the signature of any Lefschetz fibration in terms of the second cohomology of the moduli space of stable curves. As a consequence we see that the sphere in moduli space defined by any (not necessarily holomorphic) Lefschetz fibration has positive “symplectic volume”; it evaluate...
متن کاملRelative Fixed Point Theory
The Lefschetz fixed point theorem and its converse have many generalizations. One of these generalizations is to endomorphisms of a space relative to a fixed subspace. In this paper we define relative Lefschetz numbers and Reidemeister traces using traces in bicategories with shadows. We use the functoriality of this trace to identify different forms of these invariants and to prove a relative ...
متن کاملEquivariant Lefschetz Maps for Simplicial Complexes and Smooth Manifolds
Let X be a locally compact space with a continuous proper action of a locally compact group G. Assuming that X satisfies a certain kind of duality in equivariant bivariant Kasparov theory, we can enrich the classical construction of Lefschetz numbers to equivariant K-homology classes. We compute the Lefschetz invariants for self-maps of finite-dimensional simplicial complexes and of self-maps o...
متن کاملLefschetz formulae and zeta functions
The connection between Lefschetz formulae and zeta function is explained. As a particular example the theory of the generalized Selberg zeta function is presented. Applications are given to the theory of Anosov flows and prime geodesic theorems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Control and Optimization
دوره 44 شماره
صفحات -
تاریخ انتشار 2005